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LETTER TO THE EDITOR 

Electroweak effects in p-wave superconductors 

D Bailin? and A Love$ 
f School of Mathematical and Physical Sciences, University of Sussex, Brighton, UK 
$ Department of Physics, Bedford College, London NW1, UK 

Received 7 February 1983 

Abstract. The unification of electromagnetism and weak interactions leads to anisotropic 
mixing of the electroweak gauge bosons in p-wave superconductors. It also leads to parity 
violating components in the gap matrix. 

In the standard electroweak theory (Glashow 1961, Weinberg 1967, Salam 1968) a 
locally SU(2) x U(l )  gauge invariant theory is spontaneously broken down to the local 
electromagnetic gauge invariance of the vacuum. The pairing of electrons in a 
superconductor means that the (BCS) ground state breaks even this residual gauge 
invariance. The relevant energy scales of the two symmetry breakdowns differ enor- 
mously, with the electroweak breaking characterised by a vacuum expectation value 
of order 10" eV, and the electromagnetic breaking by a gap of order 1 eV. For most 
purposes, therefore, the electroweak symmetry is completely irrelevant in supercon- 
ductivity. However, when we study parity violation in superconductors the electroweak 
gauge invariance might lead to observable effects. This is because the (neutral) vector 
boson mass eigenstates in the superconductor (2, f )  are coherent mixtures of the 
vacuum mass eigenstates (2, y )  (Dereli et a1 1982) and both 2 and f have parity 
violating interactions. In a previous paper (Bailin and Love 1982a) we studied this 
effect in ordinary superconductors, and suggested that the Z-y mixing phenomenon 
generates possibly observable effects in experiments designed to detect parity violation 
using the Josephson effect (Vainshtein and Khriplovich 1975). More precisely, we 
showed that the Vainshtein-Khriplovich effect, which predicts a deviation from the 
flux quantisation condition, is itself modified by the mixing of the gauge bosons. 

The experimental tests are difficult, and may require the use of Chevrel supercon- 
ductors which remain superconducting at very high fields (Fischer 1975). However, 
the phenomenon is of great intrinsic interest, as a macroscopic manifestation of the 
gauge fields of weak and electromagnetic interactions. In this letter, we extend the 
discussion of Z-y mixing to p-wave superconductors where the gauge bosons may 
mix in a spatially anisotropic way. 

However, we discuss first an effect not considered by Dereli et a1 (1982) or Bailin 
and Love (1982a), namely the presence of parity violating covariants in the gap matrix, 
induced by the weak interactions. This discussion is presented only for pairing with 
total angular momentum J = 0 and is given both for the case of an s-wave superconduc- 
tor ( J p  = 0') and for the case of a p-wave superconductor ( J p  = 0-), where P denotes 
parity. The discussion of 2-7 mixing effects follows this and is presented for a general 
p-wave spin triplet pair, which need not have J = 0. 
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The most general form of the electron gap matrix which is consistent with Fermi 
statistics and which has J = 0 is given by 

A(k, K) = AIYS + A2n YYOYS + A3YO% + A J  + Asn - YYO+ A6n Y,  (1) 

where n is a unit vector in the direction of the relative momentum k of the electrons 
in the pair, and K is their total centre-of-mass momentum. The coefficients Ai (i = 
1 . . .6 )  are in general functions of K (but not of n ) .  In the non-relativistic (NR) limit 
this reduces to 

A = AI - A 3 -  (As+A6)n * U, (2) 

showing that the terms proportional to A l ,  A3 characterise s-wave pairing (P = +), 
while those proportional to As,A6  describe p-wave pairs (P=-). In the present 
context, therefore, we are concerned with a system in which 

As, A6 >> Ai ,  A3 (3) 

and in which AI,  A3 are only non-zero because the pairing interaction is not parity 
invariant, since weak interactions violate parity. The general technique for deriving 
and solving the gap equation has been thoroughly explained in other publications 
(Bailin and Love 1982b, c) and we merely quote the results. In the notation of these 
earlier papers, the gap equation has the form 

A(k, K) =is2 I d 3 q ( 2 T ) - 3 D ~ ~ ( k  -q)i??rB, (4) 

where -igrA describes the electron-phonon interaction, and DAB is the exchanged 
phonon's propagator. Assuming scalar phonon exchange, we take 

g r A  = g J  (5a 1 
and the propagator to have the form 

Ikl= 141 =PF ( 5 c )  

where pF is the Fermi momentum. In addition we include a parity violating interaction 
which will be generated by Z exchange between the electrons of the pair. Thus the 
weak interaction is modelled by an additional contribution with 

grA = 'Ya (gV + gAYS) (6a 1 
where 

gv = (g/2 cos e,)(2 sin'o, - $1, gA = (g/2 cos e,)($) (6b, c )  

with 8, the weak mixing angle and g = e/sin 8, the semi-weak coupling constant in 
the standard model. The (known) propagator for Z exchange is of the form 

DAB(k-q)=ga&(i * 8 >  (7 1 
where k and q satisfy (5c). Proceeding as in Bailin and Love (1982b, c), we find that 
the components AI,  . . . , A6 of the gap are all proportional to a single gap combination, 
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which in the 0--dominant case is given by 

where m is the electron mass and p is the (relativistic) chemical potential given by 

p = (pk +m2l1I2. (9) 
In (8) the quantities Vo, V1 and Xo are essentially partial wave amplitudes of the 
potentials given in (56) and (7): 

Solving the gap equation in the Ginzburg-Landau region, close to the critical tem- 
perature T,, gives 

A = [ (p2  + m2) VI -pivOl-l ( p F v d  + p  v ln  * yyo + m Vln 6 y 

with the overall scale d given by minimising 

where 
t = (T - T,)/T,. 

Notice that in the NR limit pF<< m = p .  It follows using (2) that 

A +  -dn U (13) 
so that the parity mixing occurs only as a relativistic effect of order u / c .  

We note that the same calculation is readily adapted to handle the case of ordinary 
s-wave superconductors in which the gap is predominantly J p  = O+. Then all com- 
ponents A I , .  . . , A6 are proportional to 

and the solution is 

A =  [(II.2+m2)VO--p~V11-1~VOY5+PFVln * Y Y O Y ~ - ~ ~ O Y O Y ~  

- [4gvgAxo/g;P (V1- V0)l 

x PCL 2( ~ 1 -  vo) + p i v o  + wFVln * W O  + mpF vln y l ~ p e ,  (15) 
where e is again given by minimising the free energy (12) with d replaced by e.  As 
before, the parity violation in the gap is of order v / c  and disappears in the static limit: 

A + e .  (16) 
The parity violating admixture in the gap matrix, together with the parity violating 
Hamiltonian for the weak force between electrons, will lead, in the p-wave case, to 
a reduction in the degeneracy of the order parameter, as a doubly weak effect. We 
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hope it may be possible to devise more sensitive tests of a parity violating admixture 
in the gap. In any case, there is a singly weak effect in the mixing of the neutral 
electroweak gauge bosons which occurs when the derivative a,d in (12) is replaced by 
the SU(2) x U ( l )  covariant derivative Dud. To determine this we must find the gauge 
transformation properties of d, and these are determined by the transformation 
properties of the various bilinear covariants appearing in (I). As before (Bailin and 
Love 1982a), we consider only those transformations which transform an electron 
state into an electron state, since there is no electron-neutrino condensate. Then the 
gauge covariant derivative of the bilinear 2'Te is (for an arbitrary y-matrix r): 

D,(PTe) = (a, - iP,)(P're) + %Qa2'{I', ys}e, ( 1 7 ~ )  

where P, and Q, are combinations of the neutral gauge boson fields: 

P, = $(gW% + 3g'B,) = e cosec 28,[(1-4 sin2 O,)Z, + 2 sin 2O,A,], (17b) 

(17c) Q, = $(gW% - g ' B , )  = e cosec 28,2,. 

Z,,A,  are the neutral vector boson mass eigenstates in vacuo (but not, as we shall 
see, in a superconductor). It follows that 

D,Al =(a, +iP,)Al-iQuA4, DaA2= (a, +iP,)A2-iQaA5, ( 1 8 ~ ~  b )  

Dah3 = (a, +iPa)A3, D,A4= (a, +iPa)A4-iQaAl, ( 1 8 ~  d )  

D, As = (a, + iP, )As - io, A2, W e ,  f) DaA6 = (a, +iPa)A6. 

Then using (8) we find 

which gives 

Dad -+ (a, + iP,)d (20) 

in the NR limit. Thus in the J p  = 0- dominant p-wave pairing so far considered the 
Z-y mixing in the NR limit is precisely that found in Bailin and Love (1982a). 

However, this form of p-wave pairing is not the most general, nor even the most 
likely, to arise, as our experience of superfluid 3He has shown (Leggett 1975). In 
general, for a p-wave spin triplet pair, independently of the total angular momentum 
J, we may write 

A = dwicrF'n (21) 

in the notation of (2). Evidently the 0- pairing we have considered hitherto is described 
by 

dei = d8,i. (22) 

Our experience of 3He suggests that we should also consider the following special cases. 

where d andX are real and Rei  is a rotation matrix. (This includes (22) as a special case.) 
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(ii) Planar phase 

L283 

(24)  

where d and x are real and o is a real unit vector. 
(iii) A phase 

d,, = d @ , ( l / J i ) ( a l i  + i w , )  (25)  

where d is real, /3 is a real unit vector, and al ,  a2 are real orthonormal vectors. 
(iv) A1 phase 

d,i = d b 1 ,  +$',)(all +iwI) (26)  

where d is real, PI, p2 are real orthonormal vectors, and so are al ,  a'. 
In these more general cases the derivative terms in the free energy have a more 

complicated form than that given in (12) ,  which describes only the J p  = 0- case. The 
gradient free energy has the general structure 

where d ,  is the (complex) vector with components d,,, and in weak coupling approxi- 
mation 

(28)  
(i.e. KT is $ times the coefficient of lVdI2 in (12)) .  When we replace the derivative V 
by the covariant derivative D given in (20) ,  we generate gauge boson mass terms 
additional to those generated by the Higgs doublet in the standard model. In fact the 
total neutral gauge boson mass Lagrangian is given by 

KT = f K L  = 75(3)p;/80.rr4(kBTJ2m 

--LEM = ~ m i Z ' Z t  +iKTd:,d,,P'P' +$(KL -KT)d:,d,,P'P', (29a 1 

(296)  

gives the Z-boson mass in vacuo. The field combination Pi is given in (17b) .  The 
anisotropy, if it occurs, enters the mass matrix via the last term of (29a) .  

Since the additional mass terms are small compared with m;, we may work to first 
order in them. Then the mass eigenstates will in general have the form 

where 
mi = e cosec' 2 8 , l J i ~ ~  

.. 

- no summation 
Z, = Z, +x,A, 

A ,  = A ,  -x,Z, 

where Z and A are the vacuum eigenstates and the (small) mixing parameter x ,  is 
expected to be anisotropic. The mass eigenvalues all have the form 

m2(&) = m i [ l  +K,J?GFd2(1 - 4  sin2 ( 3 1 ~ )  

m 2 ( A , )  = 4e2K,d2, (316)  
with K, in general anisotropic, and we find that in all cases 

x ,  = Ka&GFd22 sin 28,(1-4 sin2 8,). 

Of the four phases defined in (23)-(26) only the B phase has no anisotropy, since 

R,,R,, = 81,. (33)  
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In this case the mixing and the mass eigenvalues are given by 

K‘B’ = KL i- ~ K T .  ( 3 4 )  

As the name implies, the planar phase has a planar symm:try (in the plane 
perpendicular to U ) .  In this plane the mass eigenstates, denoted Z:”, Ay’ are given 
by 

Kip’ =KL+KT. ( 3 5 )  

K f ’  = ~ K T .  (36) 

However, in the direction parallel to w the masses and mixing are given by 

As expected from (29a) the masses and the mixing are isotropic when K L  = KT, 
In the remaining two phases the anisotropy is quite independent of the vectors 

PI, & or p. In both of these cases there is also a symmetry in the plane defined by 
a1 and a2 (perpendicular to al A a*). In this plane 

( 3 7 )  KIA) = KiAP” = 1. ~ ( K L  + KT) 
while in the direction parallel to a1 A az we find 

KIA) =K(A1) /I = K  T. (38) 
Again there is isotropy when KL = KT, as expected. 

One way to look for these anisotropic effects would be to consider deviations from 
magnetic flux quantisation conditions. For example, in the case of the planar phase 
(24), if the superconducting loop is in the plane perpendicular to a uniform w, then 
flux is quantised in the absence of the electroweak effect, studied here. Similarly, if 
we can prepare a loop with w parallel to dl everywhere, the flux is again quantised 
in the absence of electroweak effects. 

We thank A J Leggett for suggesting that we should study p-wave superconductors, 
and G Barton and N Rivier for valuable comments. This research was supported in 
part by SERC under grant number NG 11283. 
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